亚洲彩票app下载

OPT OpenIR  > 光谱成像技术研究室
Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection
Hou, Chenping1; Nie, Feiping2; Li, Xuelong3; Yi, Dongyun1; Wu, Yi1
作者部门光学影像学习与分析中心
2014-06-01
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
ISSN2168-2267
卷号44期号:6页码:793-804
摘要Feature selection has aroused considerable research interests during the last few decades. Traditional learning-based feature selection methods separate embedding learning and feature ranking. In this paper, we propose a novel unsupervised feature selection framework, termed as the joint embedding learning and sparse regression (JELSR), in which the embedding learning and sparse regression are jointly performed. Specifically, the proposed JELSR joins embedding learning with sparse regression to perform feature selection. To show the effectiveness of the proposed framework, we also provide a method using the weight via local linear approximation and adding the l(2,1)-norm regularization, and design an effective algorithm to solve the corresponding optimization problem. Furthermore, we also conduct some insightful discussion on the proposed feature selection approach, including the convergence analysis, computational complexity, and parameter determination. In all, the proposed framework not only provides a new perspective to view traditional methods but also evokes some other deep researches for feature selection. Compared with traditional unsupervised feature selection methods, our approach could integrate the merits of embedding learning and sparse regression. Promising experimental results on different kinds of data sets, including image, voice data and biological data, have validated the effectiveness of our proposed algorithm.
文章类型Article
关键词Embedding Learning Feature Selection Pattern Recognition Sparse Regression
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2013.2272642
收录类别SCI ; EI
关键词[WOS]NONLINEAR DIMENSIONALITY REDUCTION ; FEATURE-EXTRACTION ; SPACE ; MODEL
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000337960000006
引用统计
被引频次:207[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊亚洲彩票app下载
条目标识符/handle/181661/22361
专题光谱成像技术研究室
作者单位1.Natl Univ Def Technol, Dept Math & Syst Sci, Changsha 410073, Hunan, Peoples R China
2.Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
3.Chinese Acad Sci, Xian Inst Opt & Precis Mech, State Key Lab Transient Opt & Photon, Ctr Opt Imagery Anal & Learning, Xian 710119, Shaanxi, Peoples R China
推荐引用方式
GB/T 7714
Hou, Chenping,Nie, Feiping,Li, Xuelong,et al. Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection[J]. IEEE TRANSACTIONS ON CYBERNETICS,2014,44(6):793-804.
APA Hou, Chenping,Nie, Feiping,Li, Xuelong,Yi, Dongyun,&Wu, Yi.(2014).Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection.IEEE TRANSACTIONS ON CYBERNETICS,44(6),793-804.
MLA Hou, Chenping,et al."Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection".IEEE TRANSACTIONS ON CYBERNETICS 44.6(2014):793-804.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Joint Embedding Lear(11197KB)期刊亚洲彩票app下载出版稿限制开放CC BY请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Hou, Chenping]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
百度学术
百度学术中相似的文章
[Hou, Chenping]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
必应学术
必应学术中相似的文章
[Hou, Chenping]的文章
[Nie, Feiping]的文章
[Li, Xuelong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。